Sun, B.-C., Zhang, M., Ougazzal, A.-M., Martin, L.P., Tepper, J.M., & Creese, I. (1996)  Dopamine receptor function: An analysis utilizing antisense knockout in vivo.  In: Pharmacological Expression of Gene Regulation in the CNS, CRC Press, Boca Raton, pp. 51-78.

Tepper, J.M. (1991) Autoreceptor mediated changes in dopaminergic terminal excitability in vivo.  In: S. Z. Langer, A.M. Galzin & J. Costentin, (Eds.) Adv. Biosci.  Vol. 82 , Presynaptic Receptors and Neuronal Transporters, Oxford, Pergamon Press, pp. 307-310.

Zhang, M., Sun, B.-C., Martin, L.P., Tepper, J.M., & Creese, I. (1996)  Antisense strategies for determining CNS dopamine receptor function.  In: C.K. Tan and E.A. Ling, (Ed.) Perspectives in Neuroscience Research, pp. 1-11.

Ouagazzal, A.-M., Tepper, J.M., & Creese, I. (1998)  Antisense oligodeoxynucleotide technology: Application to CNS neuropharmacology.  In: A.A. Boulton and G.B. Baker (Eds.) Neuromethods: General Techniques in vivo, Humana Press, New Jersey, pp. 295-324.

Groves, P.M., & Tepper, J.M. (1983) Neuronal mechanisms of action of amphetamine.  In: I. Creese (Ed.)  Stimulants: Neurochemical Behavioral and Clinical Perspectives.  New York, Raven Press, pp. 81-119.

Kaur, S., Creese, I, & Tepper, J.M. (1999) Electrophysiological and behavioural effects of dopamine receptor knockdown in the brain.  In: Leslie et al., (Eds.) Antisense Technology in the CNS, Oxford University Press, Oxford, UK, pp.81-97.

Ouagazzal, A.-M., Tepper, J.M., & Creese, I. (2001)  Reducing gene expression in the brain via antisense methods.  Current Protocols in Neuroscience, John Wiley & Sons, pp. 5.4.1-5.4.15.

Tepper, J.M., & Bolam, J.P. (2004) Functional diversity and specificity of neostriatal interneurons.  Curr. Opin. Neurobiol. 14:685-692.


Tepper J.M., Tecuapetla F., Koós T. and Ibáñez-Sandoval O. (2010) Heterogeneity and diversity of striatal GABAergic interneurons. Front. Neuroanat. 4:150. doi:10.3389/fnana. 2010.00150.

Assous, M., Dautan, D., Tepper, J.M. & Mena-Segovia, J. (2019) Selective targeting of interneurons by pedunculopontine glutamatergic neurons provide a novel source of feedforward inhibition in striatum.  J. Neurosci.  pii: 2913-18. doi: 10.1523/JNEUROSCI.2913-18.2019. [Epub ahead of print].

Assous, M., & Tepper, J.M. (2019) Cortical and thalamic inputs exert cell-type specific feedforward inhibition on striatal GABAergic interneurons.  J. Neurosci. Res. I97:1491-1502.