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The effect of medial forebrain bundle (MFB) stimulation on neostriatal dopamine levels was examined using in vivo microdialysis in ure-
thane-anesthetized and awake, freely-moving rats in conjunction with single unit extracellular recordings from antidromically identified nigral
dopaminergic neurons. Dialysis samples were collected during baseline periods or while stimulating the MFB with trains of 5 or 10 pulses at
different frequencies within a physiologically relevant range. When the perfusion solution contained 1.2 mM Ca2*, even intense, high fre-
quency stimulation was ineffective at producing significant elevations in neostriatal dopamine levels whereas cocaine or amphetamine reliably
caused several-fold elevations in dopamine levels. When the perfusate contained 2.4 mM Ca?*, modest MFB stimulation within the range of
spontaneous nigral cell firing produced large and reliable increases in dopamine levels. There was a significant correlation between the pro-
portion of dopaminergic neurons that could be antidromically activated from the MFB and the increase in neostriatal dopamine. There was
no effect of stimulus pattern on the increase in dopamine levels, and results obtained in awake, freely-moving animals did not differ from
those obtained in anesthetized animals. These data provide good evidence that in vivo microdialysis is sensitive to neostriatal dopamine
overflow evoked by stimulation within the normal rate of firing of nigrostriatal neurons and that Ringer's Ca2* concentration is a critical

variable in the detection of stimulus-induced release of dopamine.
INTRODUCTION

The release of neurotransmitter from nerve terminals
as a consequence of impulse activity is generally consid-
ered to be both Ca?* and frequency dependent. Depo-
larization of the nerve terminal due to orthodromic im-
pulse flow is thought to cause Ca?* entry which
subsequently results in exocytotic release of the trans-
mitter. It follows that transmitter efflux from the termi-
nal should be greater in the presence of impulse traffic
and lower in its absence or under conditions of low ex-
tracellular Ca®* concentrations. Furthermore, impulse
traffic at a higher mean frequency or that occurring in
bursts might lead to a greater release of transmitter per
action potential than the same number of impulses at a
lower frequency due to a general phenomenon known as
facilitation which has been demonstrated in many differ-
ent systems> 4,

On the other hand, dopaminergic neurons (as well as
many other types of neurons) possess an autoreceptor-
mediated local regulatory mechanism at their terminals
that appears to modify synaptic input-output relations
by altering dopamine synthesis, release, and the electro-

physiological properties of the terminals themselves***

51, The operation of these autoreceptors both in vivo and
in vitro has been repeatedly shown to depend on the
frequency and/or pattern of stimulation or impulse flow®
2145 1t is possible, therefore, that the terminal autore-
ceptors serve to normalize the amount of dopamine re-
leased per impulse, compensating for changes in the
frequency or pattern of firing. These issues have been
examined both in vivo and in vitro; however the find-
ings have been strongly influenced by the particular tech-
nique employed. Briefly, in vitro procedures have shown
that dopamine release per pulse from neostriatal slices
exhibits either a modest inverse relationship or no rela-
tionship at all to stimulation frequency’*"%, and termi-
nal excitability studies show that the excitability of do-
pamine nerve terminals is inversely proportional to the
frequency of firing or the occurrence of spontaneous
bursts in vivo*’. On the other hand, when monitored by
electrochemistry, dopamine overflow or release in vivo
appears to be directly related to stimulation frequency
with higher stimulation frequencies producing increased
dopamine efflux'>16%,

Another in vivo technique, intracerebral microdialy-
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sis, has been widely used to evaluate pharmacological
changes in monoaminergic systems!?>26383%4! [t has
not, however, been applied as extensively to the exam-
ination of dopamine release caused by changes in im-
pulse traffic within the physiological range.

In the present experiments, we have used in vivo mi-
crodialysis to examine changes in extracellular neostri-
atal dopamine levels evoked by stimulation of the me-
dial forebrain bundle (MFB) at physiologically relevant
frequencies. Since dopaminergic axons exhibit relatively
high thresholds and are thus difficult to activate>*** sin-
gle-unit extracellular recordings were obtained from a
number of electrophysiologically identified nigrostriatal
dopaminergic neurons in each animal prior to, and in
some cases, during the dialysis measurements. These re-
cordings were used to-verify the microdialysis probe lo-
cation with respect to the MFB electrode location, to
test the efficacy of the MFB stimulus for activation of
dopaminergic axons, and to measure the ability of these
axons to respond to each stimulus within a train with an
action potential. The stimulus parameters were chosen
to approximate the duration and pattern of the frequent
bursts that characterize the spontaneous activity of ni-
grostriatal dopaminergic neurons in vivo®. Portions of
these results have previously appeared in abstract form*’.

MATERIALS AND METHODS

Subjects

Male Sprague—Dawley rats weighing between 250 and 400 g were
anesthetized with urethane (1.3 g/kg; i.p.) and installed in a ste-
reotaxic frame. All wound margins and points of contact between
the animal and the experimental apparatus werc infiltrated with
xylocaine ointment (5%) or solution (2%). Body temperature was
maintained at 37 = 1 °C by a solid-statc hcating pad and the clec-
trocardiogram was continuously monitorcd on an auxiliary oscillo-
scope and audio monitor.

Electrical stimulation

Stimulating electrodes consisted of enamel-coated stainless steel
wires approximatcly 200 um in diameter, insulated with formvar
except at the sharply cut tips. Four of these clectrodes were ce-
mented together in a square array such that each tip was separated
from its adjacent neighbor by 1 mm and the array was then low-
ered into the MFB (stereotaxic coordinates rclative to lambda and
dura: anterior 4.5 mm,; lateral 1.8; ventral 7.8 mm). Each of the 4
electrodes served as a single pole. A dialysis probe (sec below) was
coupled to a single bipolar clectrode (tip separation < 150 um, in
vitro resistance 10-30 kQ, insulated except at the sharply cut tips)
whose tip resided mid-way along the exposed fiber. The pair was
then lowered into the anterior-lateral neostriatum (stereotaxic co-
ordinates relative to bregma and dura: anterior 1.0 mm; lateral 3.5
mm; ventral 4.2 mm), so that the active region of the probe ex-
tended from 2.2 to 6.2 mm from the dural surface. Stimulating
electrodes and the dialysis probe were affixed to the skull with
dental cement and cyanoacrylate glue.

Electrical stimuli were gencrated by a Winston Electronics A-65
timer coupled to a constant current stimulus isolation unit (Win-
ston Electronics, model SC-100). The stimuli consisted of trains of
5 or 10 single monophasic square-wave pulses of durations ranging
from 250-500 us at current intensities between 0.1 and 4.0 mA.

The pattern of these stimuli was varied by altering the interpulse
interval within the train. Thus, although the mean frequency of
stimulation was held constant (5 pulses/1500 ms = 3.33 Hz or 10
pulses/1500 ms = 6.67 Hz) at values surrounding the mean firing
rate of dopaminergic neurons in vivo®!? these pulses were deliv-
ered within a window of 100—1500 ms, thus mimicking bursts of 5
or 10 spikes at intraburst frequencies ranging from 3.33 to 100 Hz.
For the remainder of this paper, these different stimuli are de-
scribed by the number of pulses and the frequency corresponding
to the interpulse intcrval within the train, e.g. 10 pulses at 12.5 Hz
means 10 pulses delivered within an 800 ms train, once every 1.5 s.

Electrodes and electrophysiological identification of dopaminergic
neurons

Recording electrodes were fabricated from 2.0 mm o.d. capillary
tubing (WPI kwik-fill) on a Narishige vertical pipette puller, and
possessed in vitro impedances of approximately 20 MQ when filled
with 2 M NaCl. The electrode impedance was then lowered by
passing a 500 ms 150 V DC pulse (Grass stimulator, model S-48)
through the clectrode which caused the resistance to drop to be-
tween 4 and 10 MQ. Electrodes were then lowered into the region
of the substantia nigra pars compacta and single unit extracellular
recordings were obtained from neurons identified as dopaminergic
using the following previously published criteria.

Dopaminergic neurons displayed a characteristic electrophysio-
logical profile of spontaneous activity consisting of an unusually
wide action potential, greater than 2 ms in duration, typically pos-
sessing a notch or inflection on the initial positive component and
fired in a slow, irregular pattern at rates ranging up to 8 Hz with
occasional bursts consisting of 2-10 spikes during which the instan-
taneous firing rate can reach 15 Hz>*'*?°, [n order to make the
identification unambiguous, the ultimate criterion for an electro-
physiologically identified dopaminergic neuron was antidromic ac-
tivation from ncostriatum at an appropriate latency 2%,

For each recorded neuron, after antidromic identification was
established from the neostriatal site, current was applied between
different pairs of MFB electrodes in an attempt to drive the cell
antidromically from the MFB. The electrode pair which elicited
antidromic responses at the lowest current was then used for the
remainder of the experiment. From 3 to 10 electrophysiologically
identified nigrostriatal neurons were tested for their responsivity to
MFB stimulation in cach animal. Measures were taken of the neo-
striatal and MFB threshold currents for each ncuron, the maximum
stimulus frequency (up to 100 Hz) at which MFB-cvoked antidro-
mic responscs were clicited to cach stimulus in the train, and the
proportion of neurons antidromically activated from neostriatum
that were also antidromically activated from the MFB. Following
the electrophysiological testing, dialysis sampling commenced.

Microdialysis

Probes were constructed from 26-gauge stainless steel tubing,
fused silica glass (150 um o.d.), cellulose dialysis membranes (250
pm o.d.) and PE-20 tubing®”-*®. The active region of the probe was
4.0 mm long. A modified rat Ringer’s solution consisting of 140
mM NaCl, 4.0 mM KCI and 1.2 or 2.4 mM CaCl, was constantly
perfused through the probe at a rate of 1 or 2 ul/min.

Samples were separated on a reverse phase C-18 (3.2 mm bore
with 3 um packing) column (ESA, Inc. HR-80). The mobile phase
consisted of 40 mM NaH,PO,, 1.3 mM octane sulphonic acid, 238
uM EDTA, and 8% v/v methanol at pH 3.6. A Coulochem elec-
trochemical detector (ESA, Inc. model 5100A) was used to quan-
tify levels of DOPAC, dopamine, S-HIAA and HVA as they cluted
off the column as well-separated peaks at 4, 5, 7 and 10.5 min re-
spectively. The output of the electrochemical detector was digitized
with a Nicolet model 4094 digital oscilloscope and fed into a Macin-
tosh I1 computer. Peak heights and latencies were measured using
custom-designed software. All dopamine values are expressed as a
percentage of from threc to five 12 min baseline samples taken at the
beginning of the experiment, no less than 2 h after probe implanta-
tion.



In order to examine the relationship between impulse pattern and
dopamine release, trains of 5 or 10 pulses (250-500 us; 0.1-4 mA)
were delivered to the MFB every 1.5 s for an entire 12 min sampling
period. From one to four (usually two) 12 min non-stimulated base-
line samples were interspersed between stimulation sampling periods.

Microdialysis in freely-moving animals

Animals were anesthetized with a mixture of ketamine (50 mg/kg)
and chloral hydrate (150 mg/kg) i.p., and installed in a stereotaxic ap-
paratus. A 21-gauge guide cannula was implanted into the neostria-
tum (stereotaxic coordinates relative to bregma and dura: anterior 1.0
mm,; lateral 3.5 mm; ventral 3.0 mm) and an array of 4 stimulating
electrodes was placed into the MFB, as described above. After a re-
covery period of at least 4 days, a dialysis probe was inserted in the
guide cannula. The tubing was prevented from tangling by a fluid
swivel and was attached to the animals” headpiece via a spring and
counterbalance arm. Samples were collected directly above the ani-
mals’ head (approximately 20 cm) in a 400 ul collection vial clipped to
the spring. At least 16 h elapsed between probe implantation and the
collection of the first dialysis sample.

RESULTS

Effect of MFB stimulation and Ca®* concentration on
dopamine overflow

Our initial experiments were performed with a perfu-
sion solution containing 1.2 mM Ca?*. At this Ca>* con-
centration, MFB stimulation, even at high frequencies
and intensities (e.g. 10 pulses at 100 Hz; 2.0-4.0 mA,
250-500 us), was ineffective at producing significant in-
creases in extracellular neostriatal dopamine levels, de-
spite the fact that the same stimulation consistently pro-
duced antidromic responses in identified dopaminergic
neurons, as shown in Fig. 1 for a representative exper-
iment. This was not due to a failure of the dialysis or
HPLC system, since a marked increase in dopamine lev-
els was produced by intravenous administration of co-
caine (5 mg/kg) in this animal or amphetamine in other
experiments (amphetamine 0.5 mg/kg i.v.; mean =*
S.E.M. = 327 = 40% increase; n = 3; data not shown).

However, quite different results were obtained when
the Ca®* concentration in the perfusion medium was in-
creased to 2.4 mM. Under these conditions, MFB stim-
ulation was effective at producing increases in neostri-
atal dopamine levels as shown for one representative
experiment in Fig. 2. Reliable increases in dopamine lev-
els could be obtained under conditions of modest MFB
stimulation (e.g. 5 pulses at 3.33 Hz; 1.0 mA, 500 us)
which produced antidromic activation of dopaminergic
neurons at currents within the same range as those that
failed to elicit significant increases in neostriatal dopa-
mine levels at a perfusate Ca®* concentration of 1.2
mM.
That the ability of MFB stimulation to produce in-
creases in neostriatal dopamine levels displayed a criti-
cal dependence on the Ca?* concentration in the perfu-
sion medium could also be demonstrated by altering the
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Ca®* concentration within a single microdialysis session,
as shown for one representative example in Fig. 3. When
the initial perfusate Ca>* concentration was 2.4 mM, re-
liable increases in extracellular dopamine levels were ob-
tained in response to modest MFB stimulation (10 pulses,
6.67-12.5 Hz at 1.0 mA, 500 us). When the Ca* con-
centration was reduced to 1.2 mM Ca?*, the stimulation-
induced increase in dopamine was reduced after 36 min
and was completely abolished after approximately 70
min. When it was returned to 2.4 mM, the stimulation-
induced increase was reinstated in a similar manner.
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Fig. 1. Neostriatal dopamine levels as a function of MFB stimula-
tion and cocaine administration when the perfusion solution con-
tained 1.2 mM Ca®*. A: raw chromatographs (left panel: high gain
trace; right panel: low gain trace) from a representative case show-
ing standards (20 pg dopamine; 200 pg DOPAC, 5-HIAA and
HVA) and samples before (sample 1) and during MFB stimulation
(sample 10) and after cocaine administration (sample 16). B: ex-
tracellular dopamine levels did not change even at high stimulation
frequencies and currents but cocaine (5 mg/kg i.v. at arrow) pro-
duced a dramatic increase in dopamine level. C: neostriatal-evoked
antidromic responses (*). Note collision with spontaneous spike in
the third trace. Arrow denotes stimulus artifact. D: train of MFB
stimulation (100 Hz) elicits antidromic responses (*) to each stim-
ulus demonstrating effective stimulation of nigrostriatal axons. MFB
stimuli consist of 10 pulses at 1 mA, 500 us, delivered once every
1.5 s for 12 min. Arrow denotes first stimulus artifact in train,
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Overall, stimulation-induced increases in dopamine over-
flow were significantly greater using a perfusion medium
Ca?* concentration of 2.4 mM compared to 1.2 mM
(Fi18 = 9.76; P < 0.02), as shown in the bottom panel
of Fig. 3.

Basal (unstimulated) dopamine levels were also de-
pendent on the perfusion calcium concentration, being
approximately 40% greater at 2.4 mM Ca®* (19.12 =
1.84 pg/ 12 min = 10.35 * 1.2 fmol/min; mean + S.E.M.)
than at 1.2 mM Ca®* (13.75 = 2.55 pg/12 min = 7.48 =
1.66 fmol/min). As measures of basal levels of dopamine
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Fig. 2. Neostriatal dopamine levels as a function of MFB stimula-
tion when the perfusion solution contained 2.4 mM Ca?*. A: raw
chromatographs (left panel: high gain trace; right panel: low gain
trace) from a representative experiment showing standards (20 pg
dopamine; 200 pg DOPAC, 5-HIAA and HVA) and samples be-
fore (sample number 4), during (samples number 5, 8 and 11 re-
spectively) and after (sample number 12) various stimulation peri-
ods. Note lack of effect of stimulus frequency. B: extracellular
dopamine showed consistent increases during each MFB stimula-
tion period. C: neostriatal-evoked antidromic responses (*). Note
the collision in the fourth trace. Arrow denotes stimulus artifact.
D: MFB-elicited antidromic responses faithfully follow 25 Hz stim-
ulation. MFB stimuli consist of 10 pulses at 1 mA, 500 us, deliv-
ered once every 1.5 s. Arrow dcnotes first stimulus artifact in train.

release tended to be somewhat variable across animals,
this difference was only of borderline statistical signifi-
cance with a one tailed #test (t = 1.74, df = 13, P =
0.0524).

An estimate of the effects of the perfusion Ca** con-
centration on the excitability of dopaminergic nigrostri-
atal terminals in the region of the dialysis probe was ob-
tained by measuring the threshold currents for antidromic
activation from the probe site*~, Although there was
clearly a difference in MFB stimulation-induced dopa-
mine overflow with 1.2 vs 2.4 mM Ca?* in the perfusion
medium, there was no significant difference in the an-
tidromic thresholds of nigrostriatal dopaminergic nerve
terminals at 1.2 (1.72 = 0.25 mA) vs 2.4 mM (2.20 =+
0.20 mA) Ringer’s Ca®* as shown in Fig. 4.
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Fig. 3. A: stimulation-induced increases in neostriatal dopamine
overflow with 2.4 mM Ca?* in perfusion medium (gray areas) were
abolishdd when the Ca?* concentration was reduced to 1.2 mM
(white area). These stimulation-induced increases were reinstated
when the Ca®* concentration was returned to 2.4 mM. B: summary
chart showing significantly greater stimulation-induced dopamine
overflow at 2.4 mM as compared to 1.2 mM (*P < 0.05). Error
bars represent S.E.M. Numbers within bars represent number of
cases in each condition. MFB stimuli consist of 10 pulscs at 1 mA,
500 us, delivered once every 1.5 s.
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Correlation between stimulation-induced dopamine over-
flow and antidromic responding from MFB

There was a significant positive correlation between
the proportion of dopaminergic neurons that could be
antidromically driven from the MFB and the increase in
dopamine overflow induced by identical stimuli (10 pulses
at 12.5 Hz; 1 mA, 500 us) across animals at 2.4 mM
Ringer’s Ca®* (r = 0.778; F, ;; = 19.99; P < 0.001) as
shown in Fig. 5. Animals in which a large proportion of
the nigrostriatal neurons were antidromically activated
from the MFB site showed larger increases in dopamine
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Fig. 5. Significant correlation of stimulation-induced dopamine
overflow vs percentage of dopaminergic neurons antidromically ac-
tivated by identical MFB stimuli in different animals (train of 10
pulses, 12.5 Hz, 1 mA, 500 us, once every 1.5s; r = 0.778, F, ;5 =
19.99, P < 0.001).
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levels in response to the MFB stimulation than animals
in which only a small fraction of the nigrostriatal neu-
rons recorded could be antidromically driven from the
MFB. Figure 6 shows a representative example of an
animal in which 9 neurons could be antidromically driven
from the neostriatum, but only one could be antidromi-
cally activated by MFB stimulation. Stimulation at that
MFB site was also ineffective in producing significant in-
creases in neostriatal dopamine levels. An i.v. injection
of cocaine (1 mg/kg), however, produced a large (>5-
fold), transient elevation in neostriatal dopamine levels.

Effect of MFB stimulation pattern

When the number of pulses per train was held con-
stant at 5 or 10, stimulation-induced dopamine overflow
was not dependent on the pattern of stimulation, despite
the fact that robust increases were obtained at each fre-
quency examined as shown in Fig. 7. No frequency de-
pendence was observed at stimulation frequencies within
(6.67 Hz, 8.33 Hz, 12.5 Hz) and beyond (25 Hz) the
normal physiological firing rates of dopaminergic neu-
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Fig. 6. MFB sites that were ineffective in antidromically activating
dopaminergic neurons were also ineffective in producing increases
in neostriatal dopamine overflow. A: neostriatal-evoked antidromic
responses (*). Note collision in the third trace. B: single pulse MFB
stimulation fails to elicit antidromic responses in the same dopa-
mine cell. C: MFB stimulation fails to increase striatal dopamine
overflow; however cocaine administration (1 mg/kg i.v. at arrow)
caused over a 500% increase.
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Fig. 8. MFB stimulation-induced increases in neostriatal dopamine
overflow in awake, freely-moving animals. A: representative ani-
mal shows reproducible increases at different stimulation frequen-
cies. B: summary chart showing no difference in striatal dopamine
overflow at 6.67 Hz compared to 12.5 Hz in freely-moving animals
(n = 3). Error bars represent S.E.M. Numbers within bars repre-
sent number of cases at each frequency.

rons, despite the fact that in all cases, recordings from
nigrostriatal neurons demonstrated that the dopaminer-
gic axons were able to faithfully follow the MFB stimuli.

To test the hypothesis that the lack of dependence on
stimulus pattern was an artifact of general anesthesia or
immobilization in the stereotaxic apparatus, similar ex-
periments were conducted in unanesthetized, freely mov-
ing animals with a perfusion Ca®* concentration of 2.4
mM, as illustrated for one representative case in the up-
per panel of Fig. 8, and averaged across experiments
(n = 3) in the lower panel. The results obtained in freely
moving animals were similar in all respects to those ob-
served in anesthetized animals; the percent increase in
dopamine levels as a function of MFB stimulation rela-
tive to baseline was similar in magnitude to those ob-
served in urethane-anesthetized animals and no signifi-
cant effect of stimulus pattern was observed.

DISCUSSION

The present experiments demonstrate that increases
in neostriatal dopamine levels elicited by stimulating
dopaminergic axons at rates within the range of their
normal physiological activity can be detected in vivo by
microdialysis. Dopamine levels rose rapidly upon stimu-
lation (within a single 12 min sample period), and de-
cayed with a similar rapid time course. DOPAC levels
showed a much poorer temporal correlation to MFB
stimulation, and did not decay consistently during the
interstimulus baseline periods, indicating that the extra-
cellular level of DOPAC is not very useful as an index
of dopamine release in microdialysis studies of this kind
where stimuli are repeated and varied many times in a
single animal.

There have been a number of reports attempting to
demonstrate that brain compounds recovered from di-
alysates are neuronal in origin, by showing that levels of
the compound can be reduced under exposure to zero
Ca?* or calcium antagonists, sodium channel blockade
by tetrodotoxin or by decreased neuronal activity follow-
ing administration of autoreceptor agonists e.g.2%%2*
404749 Although detailed pharmacological manipula-
tions were not performed in the present study, we did
observe that basal levels of neostriatal dopamine release
were some 40% higher when the perfusion medium con-
tained 2.4 mM Ca®* than when it contained 1.2 mM
Ca®*, consistent with the recent findings of others®'**®.
These data suggest that the basal dopamine levels re-
flect, at least in part, dopamine released by the sponta-
neous activity of nigrostriatal neurons.

The fact that use of a perfusion medium containing
1.2 mM Ca®* was insufficient to reveal stimulation-in-
duced dopamine increases is interesting and unexpected,



since 1.2 mM has been reported to be the extracellular
Ca®* concentration in rat neostriatum®. In contrast to
the failure of MFB stimulation to increase neostriatal
dopamine overflow at 1.2 mM Ca®*, administration of
cocaine or amphetamine produced extremely large in-

creases in neostriatal dopamine levels, indicating that the.

dialysis system was sensitive to changes in dopamine lev-
els at this lower Ca®* concentration.

One possible explanation for the requirement for a
high perfusion Ca®* concentration is that the excitability
of the nigrostriatal terminals varied with the Ca** con-
centration and thereby affected the impulse-dependent
release of dopamine. Decreased terminal excitability has
been shown to be associated with decreased dopamine
release per pulse and increased terminal excitability with
increased release**~*¢. However, this was not the case in
the present experiments; the current threshold necessary
to antidromically activate dopaminergic neurons from
neostriatum was not significantly different at 1.2 mM vs
2.4 mM Ca?*, The slight difference that was observed
indicated that the excitability of the nigrostriatal termi-
nals was slightly lower at the higher Ca** concentration,
rather than higher. Thus, changes in evoked release due
to a change in the electrical excitability of the terminals
as a function of Ca®* concentration can be ruled out.

Another possibility is that the requirement for high
Ca®" is related to the lack of Mg?* in our perfusion so-
lution. This does not seem likely, however, since basal
levels of dopamine are not affected by the presence or
absence of Mg®* in the perfusion medium®'. Further-
more, early electrophysiological studies of neurotrans-
mitter release clearly show an antagonistic effect of Mg**
on Ca?*-dependent neurotransmitter release'’, and local
infusion of Mg?* has been shown to antagonize calcium-
~dependent dopamine release in previous microdialysis
experiments*’, Based on these results, one would predict
that the addition of Mg?" ions to the perfusion medium
would, if anything, raise the Ca®*-requirement for stim-
ulated release, not lower it.

A more likely explanation may be that some aspect
of the dialysis or MFB stimulation procedure itself some-
how reduces the extracellular Ca®* concentration in the
region surrounding the probe in such a way as to require
perfusion with a higher Ca?" concentration in order to
support and maintain the Ca**- and impulse-dependent
exocytotic release of dopamine throughout the 12 min
stimulation and sampling period. It has been shown, for
example, that repetitive neuronal activity leads to rather
large decreases in extracellular Ca®* in cerebellar cor-
tex, as measured with ion-sensitive microelectrodes™.
When the MFB is stimulated under the conditions of the
present experiment, it is likely that hundreds and per-
haps thousands of dopaminergic axons are driven to fire
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synchronously. It is conceivable that the resulting syn-
chronous firing of millions of tightly packed dopaminer-
gic terminals in neostriatum removes enough Ca®* from
the extracellular pool due to influx into presynaptic ter-
minals to depresses the extracellular Ca®* concentration
enough to interfere with depolarization—secretion cou-
pling, particularly when the stimulation is maintained for
12 min. It is interesting to note that in prefrontal cortex
where the density of dopamine terminals and the basal
levels of dopamine are far less than in neostriatum, stim-
ulus-evoked release can be demonstrated when the Ca®*
concentration of the perfusion solution is 1.2 mM?3,

Stimulation-induced increases in neostriatal dopamine
overflow were not dependent on the pattern of MFB
stimulation. When using anesthetized preparations, the
possibility always exists that the anesthesia is somehow
exerting confounding factors on the results. Indeed, var-
ious electrophysiological investigations have reported
differential effects of pharmacological manipulations on
anesthetized vs awake animals'®'*1*?°, However, in the
present experiments, the lack of frequency or pattern
dependence was not an artifact of general anesthesia,
since it was observed both in the urethane-anesthetized
rats as well as in awake, freely-moving animals. Not only
was the lack of a pattern effect consistent, but the mag-
nitude of the effect (approximately a 50% increase above
non-stimulated baseline samples) was also similar in the
two conditions.

The lack of a pattern effect similarly cannot be attrib-
uted to an inappropriate choice of stimulus frequencies
since the range examined (3.33-100 Hz) included and
extended beyond the firing frequency of dopaminergic
neurons in both the single-spike mode and within spon-
taneous bursts®®?°. Likewise, the lack of frequency de-
pendence is not due to the failure of dopaminergic ax-
ons to support impulse conduction within this range,
since our electrophysiological data clearly demonstrate
that dopaminergic axons reliably followed stimuli at these
rates.

A similar lack of frequency dependence is also found
when endogenous or pre-labeled [*H]dopamine release
per pulse is measured from neostriatal slices in vitro us-
ing a low number of total pulses, and with a sufficiently
long stimulus period, dopamine release actually shows a
slight inverse relationship to stimulus frequency’?'?2,
The present data therefore are consistent with and ex-
tend the in vitro striatal slice data to the in vivo condi-
tion. Electrophysiological data suggest that this lack of
dependence on stimulus pattern may be due to an au-
toreceptor-mediated, terminal regulatory mechanism
that is more strongly activated at shorter interpulse in-
tervals corresponding to faster spontancous firing rates
and/or occurrence of burst firing*~*¢. When MFB con-
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ditioning stimuli very similar to those employed in the
present study were applied, the excitability of dopamine
terminals in neostriatum in vivo was transiently and dra-
matically reduced via an autoreceptor-mediated mecha-
nism*>. The overall role of this mechanism may be to
maintain dopamine release per pulse at a relatively con-
stant level, regardless of changes in firing rate or pattern.
Further experiments will address this issue by examining
the frequency dependence of stimulation-induced dopa-
mine overflow in the presence and absence of autore-
ceptor blockade.

In contrast to the present results, when the electro-
chemical signal corresponding to dopamine is assessed,
there appears to be a direct relationship between this
signal and stimulation frequency or patterning both in
vitro* and in vivo'*!'%32  Differential pulse voltam-
metry'® has been most commonly used to address these
issues; however there has been some controversy as to
whether this technique can separate DOPAC and ascor-
bate from dopamine!”?’2, Furthermore, in many such
studies, long continuous trains of high frequency stimuli
(25-100 Hz) well in excess of the highest firing rates ever
achieved by dopaminergic neurons are used, and fre-
quency effects are sometimes confounded with the num-
ber of stimuli delivered'!?%33%2 Thus, methodologi-
cal differences may account for some of the discrepancies
between results from voltammetric studies and those re-
ported in the present study which are in good agreement
with results from previous in vitro experiments”%21%,

The MFB sites that were most effective at eliciting in-
creases in neostriatal dopamine overflow were those that
also elicited antidromic action potentials in the highest
proportion of single dopaminergic neurons recorded in a
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